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ABSTRACT
It is shown that the field coproduct of any skew field E with a binomial
(commutative) field extension F/k over k can be expressed as a cyclic
extension of a skew field K (the E-socle), itself the field coproduct of
[F: k] copies of E over k. Qua vector space the coproduct may also be
expressed as a tensor product of £ and K over k.

1. Introduction

The field coproduct of skew fields (cf. [4] and §2 below) is a useful construction,
which however is sometimes difficult to manipulate owing to the lack of a conve-
nient normal form for its elements. Our object here is to examine its structure
when one of the factors is a commutative binomial field extension F/k. Since we
are dealing with skew fields throughout, we shall usually speak simply of fields
and only sometimes add “skew” for emphasis. Let us recall that for any two
fields F and F with a common subfield k their ring coproduct F #, E is a fir
(= free ideal ring) and as such has a universal skew field of fractions U, which
will be denoted by F o E or F o E and called the field coproduct of F' and E
over k. We shall be concerned with the case where F is any skew field with & in
its centre. OQur main result (Theorem 3.2} is to show that there is a subfield K
(itself a coproduct) such that

(1) U=FOkE=F®kK,
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as (F, K)-bimodule, in particular [U: K] = [F": k].

Thus the coproduct U of F with E can be represented as a tensor product of
F with another subfield K, but it must be emphasized that the multiplication
is not that induced by that of the factors; thus it should perhaps be described
as a “skew tensor product”. Such a representation as a skew tensor product
also exists for the centralizer of F' in U; this is derived in §4 from a general
decomposition theorem for a field by the centralizer of a finite extension of its
centre (Proposition 4.1). In §5 we examine the case of finite Galois extensions
and in Proposition 5.1 obtain conditions on the coproduct for the extension to

be cyclic.

ACKNOWLEDGEMENT: My thanks are due to a referee, whose repeated careful
readings led to the removal of a number of errors and obscurities.

2. Notation and terminology

As already mentioned, by a field we understand a not necessarily commutative
division ring; sometimes the prefix “skew” is added for emphasis. All our fields
will be k-algebras, where k is a certain commutative base field, fixed once and
for all.

We briefly recall one or two other facts that will be needed later. A matrix A
is said to be full if it is square and cannot be written as A = PQ, where @ has
fewer rows than A. A homomorphism of rings which keeps full matrices full is
called honest.

If K, L are any fields with a common subfield E, then their ring coproduct
R = K g L over E may be defined essentially as a pushout. We recall from [4],
Theorem 5.3.9, p. 222 that R is a fir and hence has a universal field of fractions,
written U or also U(R). More specifically we shall call it the field coproduct
of K and L over F and write it as K og L. Its elements are obtained by formally
inverting all full matrices over R and taking their entries.

The free k-algebra on any set X, k(X), is also a fir. More generally, if E is
any field (and k-algebra), then the tensor E-ring on X, E % k(X), defined as the
E-ring generated by X with defining relations az = za(a € k), is again a fir, and
so has a universal field of fractions, which is written Ex € X ». In fact we have
a natural isomorphism (cf. [4], Prop. 5.4.3, p. 225):

B Xy Eoké X 3.
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3. Coproducts with a finite extension

Let E be any field and denote by K the field coproduct of countably many copies
of E (over k), indexed by Z. Then K has an automorphism ¢ called the shift
automorphism, which consists in replacing each element of the i-th factor E by
the corresponding element in the (i+1)-st, for all i € Z. There is a corresponding
construction for a field coproduct of n factors F over k, for any n € N, with shift
automorphism of period n. Returning to our countable coproduct K, we can
form the skew polynomial ring K|u; o] and its field of fractions L = K (u;0) (cf.
e.g. [4], Ch.2). Since L is generated by u and one copy of E over k, it must be a
specialization of the field coproduct k(u) o E, where k(u) is the rational function
field in a central indeterminate u. In fact it is not hard to see (cf. [4], Lemma
5.5.6, p. 235) that we have an isomorphism

K(u;o) 2 k(u)or, E=Ex€ up.

We consider the analogue when k(u) is replaced by a binomial extension. Thus

we take F' = k(a), where the minimal polynomial of a over k is

(1) p(z) =2" — A, where ) € k.

It turns out that in this case the field coproduct can be expressed as a residue-
class ring of a skew polynomial ring:

THEOREM 3.1: Let E be any field which is a k-algebra, and F = k(a) a
commutative binomial extension of k, where a has the minimal polynomial p
over k given by (1). Then

(2) E oy F = K[u;0]/(p),

where K is the field coproduct over k of n copies of E, with shift automorphism
o of order n.

Proof: Let P be the ring coproduct of n copies of E over k, with shift
automorphism o, and in the skew polynomial ring Plu;o] write p = u™ — A.
It is clear that p is in the centre of this ring; we claim that

(3) E %, F = Plu;0]/(p).
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Let us denote the n copies of E in P by Eg, Ey, ..., E,_1, where E; = u™* Egu’.
Then we have a homomorphism

a: Ex, F — Plu; 0]/(p),

obtained by mapping a to %, the image of u in the quotient on the right, and E
to Ey. To construct a map in the opposite direction we note that every element
of E x F' can be written as a polynomial in a, of degree at most n — 1, with
coefficients that are expressions in the elements of E, a~'Fa,...,a' " Ea"™"!.
Thus we can map Plu;o] to E x F by letting u — a and E; — a"*Ea’; since
u* — A — a™— A =0, we find that p(u) maps to 0, so we obtain indeed a
homomorphism 8 from Plu;c]/(p) to E * F and this is easily seen to be inverse
to a; thus (3) is established.

We now have the following diagram, where K is the universal field of fractions

of P. Clearly o extends to an automorphism of K, again written o.

Ex, F —— Plu;0]/(p)

® | |

EopF Klu; 0]/(p)

It is also clear that the centre of P is k, and by Theorem 4.4 of [5], & is also
the centre of K; thus K[u;0]/(p) is a ring containing K, of finite dimension n
as K-space, where n is the degree of p. But E o F arises by inverting all full
matrices of E * F, while K[u; o]/(p) is obtained by inverting certain full matrices
over Plu;o]/(p) = E x F, viz. those with all entries in P. We observe that
any full matrix over P remains full over Plu;c]/(p), because it is inverted over
K[u;0]/(p). Hence we can pass from K[u;o]/(p) to E o F by inverting certain
full matrices, and in particular, since E x F' is embedded in F o F, it follows that
K[u;0]/(p) is embedded in E o F. Hence K[u;o]/(p) has no zero-divisors, so
Klu;0]/(p) = L is a field. Since the vertical arrows in (4) are epimorphisms, we
conclude that

Eoy F 2 Klu; o]/ (p),

and the proof is complete. 1

The conclusion of Theorem 3.1 can be expressed as an exact sequence

(5) 0 —» (p) — K[u;0] — E o), F — 0.
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A comparison with the sequence
(6) 0— (p) — kfu] — F —=0

shows that (5), as a sequence of vector spaces, is obtained from (6) by operating
with ® K. We can sum up this result as

THEOREM 3.2: Ifk,E, F and p are as in Theorem 3.1, then
Eo, FE2F®: K,

where K = EqoEjo0---0FE,_janda™'Eja= E;41 (i =0,1,...,n—1,E, = E),
and the tensor product on the right is understood as a vector space.

We shall refer to K as the E-socle in EoF. Without giving a general definition
we can look on this concept as an aid to clarifying the structure of the field
coproduct. Thus Theorem 3.2 may be expressed by saying that a field coproduct
of E over k by a binomial extension F' of degree n over k can be written as a vector
space which is a tensor product of F' by a field K, itself the field coproduct of n
copies of E (the “F-socle”) with multiplication defined by the shift automorphism
o such that o™ is the identity. This construction is reminiscent of the formation
of a wreath product of groups, with the socle in the role of the normal subgroup,
but of course the socle by no means admits all inner automorphisms, as is shown
by the Cartan—-Brauer—-Hua theorem.

More generally there is an analogue of Theorem 3.2 where & is not necessarily
central in E and the shift automorphism o™ is the inner automorphism induced

by the constant term of p.

4. The centralizer of F in the coproduct

Let U be any field with centre k and let F' be a commutative subfield of U which
is a finite extension of k. If C' denotes the centralizer of F' in U, then by a theorem
of Brauer (cf. [3], Th. 7.1.9, p. 263) we have [U: C] = [F: k] = n, say. Suppose
that F/k is separable, generated by a € F' with minimal polynomial p, then by
[2], Cor. 5.7.4, p. 194,

(1) ForF2E x- - xE,,

where the E; are fields corresponding to the irreducible factors over F of p; in
particular, 4 = F corresponds to the linear factor z — a. More explicitly, let
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us write L = a ® 1, R = 1 ® a; then by interpreting L as left and R as right
multiplication on U by a, we may regard U as F ® F-module, i.e. as an F-
bimodule. We have LR = RL, p(L) = p(R) = 0, and if ¢(z,y) is defined as a
polynomial in the commuting variables z and y by the equation

(2) p(z) - p(y) = (= - y)a(=z,y),

then d = L — R, e = q(L, R) are k-linear operators of U into itself such that by
(2),

(3) de =ed = 0.

Since p(z) is separable over k, (z — a) and ¢(z, a) have no common factor in z,
so there exist f,g € F[z] = k[a, z] such that

(z-a)f +q(z,a)g=1.

If we rewrite this as an equation in = and y over k, we obtain

(z —y)f +a(z,9)g =1+ p(y)r(z,y),
for a polynomial r, and hence, on writing f; = f(L, R), g1 = ¢(L, R), we find
(4) df1 +eg1 = 1.

By (3), (4) we have im e = ker d = C, say and im d =ker e = G. Here C and G
are k-subspaces of U, in fact C is by definition just the centralizer of a and so is
a subfield of U. Moreover, CG+GC C G, forifue C,v € G, then v =az — za
for some z € U, hence uv = uaz — uze = auz — uza € G and similarly vu € G.
We summarize these findings as

PRroPOSITION 4.1: Let F/k be a finite separable field extension of degree n, say
F = k(a), and let U be a skew field containing F', with centre k. Denote left
and right multiplication by a on U by L, R respectively and put d = L — R,
e = q(L, R), where q acting on C is defined by (2) in terms of the minimal
polynomial p for a over k. Then C = ker d = im ¢ is the centralizer of F' in U
and G = ker e = im d is a C-space of (left or right) dimension n — 1 over C, such
that

(5) U=CaQG.
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The representation (5) follows from (3) and (4) and, since [U: C] = n, we
deduce that [G: C] =n — 1.

Suppose now that U = E o F is a field coproduct of a field £ with a binomial
extension F/k; then by Theorem 3.1 we have U 2 F ® K, where K is the E-
socle. If we put C; = CN K, Gy = GnN K, then replacing d = L — R by
D =L"1d =1- L™ 'R, we have an operator admitted by K, and the reasoning
that led to (5) shows that K = C; ® G}, hence

U= (F®C)® (F®Gy).

A comparison with (5) shows that C = F ® € and from the definition of C; as
the centralizer of F' in K we see that in this equation the multiplication is that
induced by the tensor product structure. Thus we obtain

THEOREM 4.2: Let U = Eoy F be the field coproduct of a skew field E which is a
k-algebra and a commutative binomial extension F/k. Then U can be expressed
asU = FQK, where K is the E-socle as before and, writing C; for the centralizer
of F' in K, we can express the centralizer C of F in U as

C=F®C.

5. Galois extensions

Suppose now that F/k is a (finite commutative) Galois extension with group I’
and E is any field (and k-algebra); then T' acts on U = E o F through the
second factor. In detail, each ¢ € T" extends to an automorphism of E % F' which
is the identity on E and hence extends to an automorphism of U over E, again
denoted by o. In this way I' acts on Uj; if the fixed field is denoted by Uy, then
[U: Up] = |I'|, by Theorem 3.3.7 of [4] (note that T’ consists entirely of outer
automorphisms of U). We claim that

U=F®U,,

as k-spaces (ignoring the multiplication). For we can use a well-known argument
to show that F' and Uy are linearly disjoint over k: if uy,...,u, € Up are linearly
independent over k but Y a,u; = 0 for some a; € F, not all 0, we may assume
that a; = 1 and 7 is chosen minimal. Then a,,...,a, cannot all lie in k, so
there exists a € I' which does not fix them all; now > 7(a; — a®)u; = 0 is a
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shorter non-trivial relation, which is a contradiction. Thus FUy = F ® Uy in U,
moreover, [U: Ug] = |T| = [F: k] = [F ® Up: Uy), and this shows that U = FQ Uy,
as claimed.

In the special case when F/k is a binomial extension, it is easily seen (and will
be shown below) that Uy is the E-socle. In fact this situation arises whenever Uy

admits conjugation by a generator of F:

PROPOSITION 5.1: Let F/k be a commutative Galois extension of degree n,
where k contains a primitive n-th root of 1, let E be any skew field which is a
k-algebra and put U = E o F. Denote by Uy the fixed field of Gal(F/k) acting
on U; then Uy admits conjugation by a generator of F if and only if F/k is a
cyclic extension, and then Uy is the E-socle in a suitable representation.

Proof: Let a be a generator of F'//k and suppose that for any z € E, a~tza € Up;
thus if o € T = Gal(F/k), we have a~°za’ = a"lza, i.e.

za’a ' =a%a" s forallz e E.

Hence A = a®a~! centralizes E and so lies in k; therefore a® = Aa. If o has order
r, then ¢ = a° = M a and so A" = 1. Let m be the LCM of the orders of the
elements of I and put b = a™; then b = A™a™ = b. This holds for each o € T,
hence b € k and so a satisfies the equation 2™ — b = 0. It follows that m = n
and F/k is cyclic.

Conversely, assume F/k to be cyclic, generated by a € F satisfying
™ — ¢ = 0 and let w be a primitive nth root of 1. Then the conjugates of
a are a,wa,wa,...,w" ta, and if K is the field generated by
E,a"'Ea,...,a' " Ea™"!, then K is the E-socle in U and is also the fixed field.
This completes the proof. 1
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