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ABSTRACT 

It is shown that the field coproduct of any skew field E with a binomial 

(commutative) field extension F/k over k can be expressed as a cyclic 

extension of a skew field K (the E-socle), itself the field coproduct of 

[F: k] copies of E over k. Qua vector space the coproduct may also be 

expressed as ~ tensor product  of E and K over k. 

1. I n t r o d u c t i o n  

The field coproduct of skew fields (cf. [4] and §2 below) is a useful construction, 

which however is sometimes difficult to manipulate owing to the lack of a conve- 

nient normal form for its elements. Our object here is to examine its structure 

when one of the factors is a commutative binomial field extension F/k. Since we 

are dealing with skew fields throughout, we shall usually speak simply of fields 

and only sometimes add "skew" for emphasis. Let us recall that  for any two 

fields F and E with a common subfield k their ring coproduct F *k E is a fir 

(= free ideal ring) and as such has a universal skew field of fractions U, which 

will be denoted by F ok E or F o E and called the field c o p r o d u c t  of F and E 

over k. We shall be concerned with the case where E is any skew field with k in 

its centre. Our main result (Theorem 3.2) is to show that  there is a subfield K 

(itself a coproduct) such that  

(1) U = F o k  E = F ® k  K, 
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as (F, K)-bimodule, in particular [U: K] = [F: k]. 

Thus the coproduct U of F with E can be represented as a tensor product of 

F with another subfield K,  but it must be emphasized that  the multiplication 

is not that  induced by that  of the factors; thus it should perhaps be described 

as a "skew tensor product".  Such a representation as a skew tensor product 

also exists for the centralizer of F in U; this is derived in §4 from a general 

decomposition theorem for a field by the centralizer of a finite extension of its 

centre (Proposition 4.1). In §5 we examine the case of finite Galois extensions 

and in Proposition 5.1 obtain conditions on the coproduct for the extension to 

be cyclic. 

ACKNOWLEDGEMENT: My thanks are due to a referee, whose repeated careful 

readings led to the removal of a number of errors and obscurities. 

2. Notat ion  and terminology 

As already mentioned, by a field we understand a not necessarily commutative 

division ring; sometimes the prefix "skew" is added for emphasis. All our fields 

will be k-algebras, where k is a certain commutative base field, fixed once and 

for all. 

We briefly recall one or two other facts that  will be needed later. A matrix A 

is said to be full  if it is square and cannot be written as A -- PQ, where Q has 

fewer rows than A. A homomorphism of rings which keeps full matrices full is 

called honest.  

If K, L are any fields with a common subfield E, then their ring coproduct 

R = K *E L over E may be defined essentially as a pushout. We recall from [4], 

Theorem 5.3.9, p. 222 that R is a fir and hence has a universal field of fractions, 

written U or also U(R). More specifically we shall call it the f ield c o p r o d u c t  

of K and L over E and write it as K OE L. Its elements are obtained by formally 

inverting all full matrices over R and taking their entries. 

The free k-algebra on any set X ,  k (X) ,  is also a fir. More generally, if E is 

any field (and k-algebra), then the tensor E-ring on X,  E *k k (X) ,  defined as the 

E-ring generated by X with defining relations ax = xa(a E k), is again a fir, and 

so has a universal field of fractions, which is written Ek ~: X :~. In fact we have 

a natural isomorphism (cf. [4], Prop. 5.4.3, p. 225): 
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3. C o p r o d u c t s  w i t h  a f in i te  e x t e n s i o n  

Let E be any field and denote by K the field coproduct of countably many copies 

of E (over k), indexed by Z. Then K has an automorphism a called the sh i f t  

a u t o m o r p h i s m ,  which consists in replacing each element of the i-th factor E by 

the corresponding element in the ( i+ l ) - s t ,  for all i C Z. There is a corresponding 

construction for a field coproduct of n factors E over k, for any n E N,  with shift 

automorphism of period n. Returning to our countable coproduct K,  we can 

form the skew polynomial ring K[u; a] and its field of fractions L = K(u; a) (cf. 

e.g. [4], Ch.2). Since L is generated by u and one copy of E over k, it must be a 

specialization of the field coproduct k(u)ok E, where k(u) is the rational function 

field in a central indeterminate u. In fact it is not hard to see (cf. [4], Lemma 

5.5.6, p. 235) tha t  we have an isomorphism 

--- o 4  E = 

We consider the analogue when k(u) is replaced by a binomial extension. Thus 

we take F = k(a), where the minimal polynomial of a over k is 

(1) p(x) = x n - A, where A E k. 

I t  turns out that  in this case the field coproduct can be expressed as a residue- 

class ring of a skew polynomial ring: 

THEOREM 3.1: Let E be any field which is a k-algebra, and F = k(a) a 

commutative binomial extension of k, where a has the minimal polynomial p 

over k given by (1). Then 

(2) E o k F = K [ u ; a ] / ( p ) ,  

where K is the field coproduct over k of n copies orE,  with shiR automorphism 

a o[ order n. 

Proof." Let P be the ring coproduct of n copies of E over k, with shift 

au tomorphism a, and in the skew polynomial ring P[u; a] write p = u n - A. 

It  is clear tha t  p is in the centre of this ring; we claim that  

(3) E *k F ~- P[u; ~r]/(p). 
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Let  us denote the n copies of E in P by Eo, E l , . . . ,  En-1, where E~ = u-~Eo u~. 
Then  we have a homomorph i sm 

a: E * k F  , P[u;a]/(p), 

obta ined by mapping  a to ~, the image of u in the quotient  on the right, and E 

to Eo. To construct  a map  in the opposite direction we note tha t  every element 

of E * F can be wri t ten as a polynomial  in a, of degree at most  n - 1, with 

coefficients t ha t  are expressions in the elements of E, a - l E a , . . . ,  al-nEa n-1. 

Thus  we can map  P[u; a] to  E * F by letting u H a and Ei --+ a-iEai; since 

u s - A H a n - A = 0, we find tha t  p(u) maps to 0, so we obtain  indeed a 

homomorph i sm ~3 from P[u; a]/(p) to  E * F and this is easily seen to be inverse 

to a;  thus (3) is established. 

We now have the following diagram, where K is the universal field of fractions 

of P .  Clearly a extends to an  au tomorphism of K,  again wri t ten cr. 

(4) 

E *k F , P[u; a]/(p) 

1 1 
E ok F K[u; a] / (p)  

I t  is also clear tha t  the centre of P is k, and by Theorem 4.4 of [5], k is also 

the centre of K;  thus K[u; a]/(p) is a ring containing K,  of finite dimension n 

as K-space,  where n is the degree of p. But  E o F arises by inverting all full 

matr ices of E * F ,  while K[u; a]/(p) is obtained by inverting certain full matr ices 

over P[u; a]/(p) = E • F, viz. those with all entries in P .  We observe tha t  

any full mat r ix  over P remains full over P[u; a] / (p) ,  because it is inverted over 

K[u; a]/(p). Hence we can pass from K[u; a]/(p) to E o F by inverting certain 

full matrices,  and in particular,  since E • F is embedded in E o F ,  it follows tha t  

K[u; a]/(p) is embedded in E o F .  Hence K[u; a]/(p) has no zero-divisors, so 

K[u; a]/(p) = L is a field. Since the vertical arrows in (4) are epimorphisms, we 

conclude tha t  

E ok F TM g[u; a]/(p), 

and the proof  is complete. | 

The  conclusion of  Theorem 3.1 can be expressed as an exact sequence 

(5) 0 * (p) * K[u;a] * E o k F  * O. 
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A comparison with the sequence 

(6) 0 , (p) . k[u] , F , 0 

shows tha t  (5), as a sequence of vector spaces, is obtained from (6) by opera t ing 

with ®K.  We can sum up this result as 

THEOREM 3.2: I l k ,  E, F and p are as in Theorem 3.1, then 

E ok F -  F Q k  K, 

where K = E0 o E1 o . . .  o E n - 1  and a - l E i a  = Ei+l (i = O, 1 , . . . ,  n - 1, En = E0), 

and the tensor product on the right is understood as a vector space. 

We shall refer to K as the E - s o c l e  in E o F .  Without  giving a general definition 

we can look on this concept  as an aid to clarifying the s t ructure  of the field 

coproduct .  Thus Theorem 3.2 may  be expressed by saying tha t  a field coproduct  

of E over k by a binomial  extension F of degree n over k can be wri t ten as a vector 

space which is a tensor p roduc t  of F by a field K,  itself the field coproduct  of n 

copies of E (the "E-socle") with multiplication defined by the shift au tomorph ism 

a such tha t  a n is the identity. This construct ion is reminiscent of the format ion 

of a wrea th  p roduc t  of groups, with the socle in the role of the normal  subgroup, 

but  of course the socle by no means admits  all inner automorphisms,  as is shown 

by the C a r t a n - B r a u e r - H u a  theorem. 

More generally there is an analogue of Theorem 3.2 where k is not  necessarily 

central  in E and the shift au tomorphism a n is the inner au tomorphism induced 

by the constant  t e rm of p. 

4. T h e  c e n t r a l i z e r  o f  F in t h e  c o p r o d u c t  

Let U be any field with centre k and let F be a commutat ive  subfield of U which 

is a finite extension of k. If  C denotes the centralizer of F in U, then by a theorem 

of Brauer  (el. [3], Wh. 7.1.9, p. 263) we have [U: C] = [F: k] = n, say. Suppose 

tha t  F / k  is separable, generated by a E F with minimal polynomial  p, then by 

[2], Cor. 5.7.4, p. 194, 

(1) F®kF-EIx...xE~, 

where the E~ are fields corresponding to the irreducible factors over F of p; in 

particular,  E1 = F corresponds to the linear factor x - a. More explicitly, let 
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US wr i te  L = a ® 1, R = 1 ® a; t hen  by  in te rpre t ing  L as left and  R as r ight  

mul t ip l i ca t ion  on U by a, we m a y  regard  U as F ® F - m o d u l e ,  i.e. as an  F -  

b imodule .  We have L R  = R L ,  p (L)  = p (R)  = 0, and  if q(x,  y) is defined as a 

po lynomia l  in the  commut ing  var iables  x and  y by  the equa t ion  

(2) p ( x )  - p ( y )  = (x  - y ) q ( x ,  y ) ,  

t hen  d = L - R ,  e = q(L,  R)  are  k- l inear  opera to r s  of U into i tself  such t h a t  by  

(2), 

(3) de = ed = O. 

Since p(x )  is separab le  over k, (x - a) and  q(x,  a) have no c o m m o n  factor  in x, 

so there  exist  f ,  g C F[x] = k[a, x] such t ha t  

(z - a)S + q(x, a)g = 1. 

If  we rewri te  this  as an  equa t ion  in x and y over k, we ob ta in  

(x - y ) f  + q(x,  y)g  = 1 + p ( y ) r ( x ,  y),  

for a p o l y n o m i a l  r ,  and  hence, on wri t ing f l  = f ( L ,  R) ,  gl = g(L ,  R) ,  we find 

(4) dr1 + egl = 1. 

By (3), (4) we have im e = ker d = C, say and im d = ker e = G. Here C and G 

are k-subspaces  of U, in fact  C is by defini t ion jus t  the  centra l izer  of a and  so is 

a subfield of U. Moreover,  C G  + G C  C G, for if u E C, v C G, then  v = az  - za 

for some z E U, hence uv = uaz  - u za  = auz  - uza  E G and  s imi la r ly  v u  E G. 

We summar i ze  these  findings as 

PROPOSITION 4.1: Let  F / k  be a f inite separable field extension o f  degree n, say  

F = k(a) ,  and let  U be a skew  field containing F ,  wi th  centre k. Deno te  lef t  

and r igh t  mult ip l icat ion by a on U by L, R respect ive ly  and p u t  d = L - R ,  

e = q(L,  R) ,  where q act ing on C is defined by (2) in t e rms  o f  the  min imal  

po lynomia l  p for a over k. Then  C = ker d = im e is the  centralizer o f  F in U 

and G = ker e --  im d is a C-space o f  (left or right) dimension n - 1 over C,  such 

tha t  

(5) U = C e a .  
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The representat ion (5) follows from (3) and (4) and, since [U: C] = n, we 

deduce tha t  [G: C] = n - 1. 

Suppose now tha t  U = E ok F is a field coproduct  of a field E with a binomial  

extension F/k;  then by Theorem 3.1 we have U - F ® K,  where K is the E -  

socle. If  we put  C 1 = C n K,  G1 = G VI K,  then replacing d = L - R by 

D = L - l d  = 1 - L - 1 R ,  we have an operator  admi t ted  by K,  and the reasoning 

tha t  led to (5) shows tha t  K = C1 ® G1, hence 

U = (F  ® C1) (~ (F  ® a l ) .  

A comparison with (5) shows tha t  C = F ® C1 and from the definition of  Ca as 

the centralizer of F in K we see tha t  in this equation the mult ipl ication is tha t  

induced by the tensor p roduc t  structure.  Thus we obtain 

THEOREM 4.2: Let U = E %  F be the field coproduct of  a skew field E which is a 

k-algebra and a commutat ive binomiM extension F / k .  Then U can be expressed 

as U = F Q K , where K is the E-socle as before and, writing C1 for the centrMizer 

of  F in K ,  we can express the centralizer C of  F in U as 

C = F ® C 1 .  

5. G a l o i s  e x t e n s i o n s  

Suppose now tha t  F / k  is a (finite commutat ive)  Galois extension with group F 

and E is any field (and k-algebra); then F acts on U = E ok F th rough  the 

second factor. In  detail, each a E F extends to an au tomorph ism of E * F which 

is the identi ty on E and hence extends to an au tomorph ism of U over E,  again 

denoted by a. In this way F acts on U; if the fixed field is denoted by Uo, then 

[g :  Uo] = tFt, by Theorem 3.3.7 of  [4] (note tha t  F consists entirely of  outer  

au tomorphisms  of U). We claim tha t  

U = F ® U o ,  

as k-spaces (ignoring the multiplication). For we can use a well-known a rgument  

to show tha t  F and U0 are linearly disjoint over k: if U l , . . . ,  u~ E U0 are linearly 

independent  over k but  ~ aiui = 0 for some ai E F ,  not  all 0, we may  assume 

tha t  a l  = 1 and r is chosen minimal. Then  a 2 , . . . ,  a~ cannot  all lie in k, so 
r there exists a C F which does not  fix them all; now ~2(a~ - a~)u~ = 0 is a 
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shorter  non-tr ivial  relation, which is a contradiction. Thus FUo = F ® Uo in U; 

moreover, [U: U0] = [FI = [F: k] = [FQU0:  Uo], and this shows tha t  U = FQUo,  

as claimed. 

In  the special case when F / k  is a binomial extension, it is easily seen (and will 

be shown below) tha t  Uo is the E-socle. In fact this s i tuat ion arises whenever Uo 

admits  conjugat ion by a generator  of F :  

PROPOSITION 5.1: Let F / k  be a commutative Galois extension of  degree n, 

where k contains a primitive n-th root of  1, let E be any skew field which is a 

k-algebra and put  U = E ok F. Denote by Uo the fixed field of  Gal (F/k )  acting 

on U; then Uo admits conjugation by a generator of  F i f  and only i f  F / k  is a 

cyclic extension, and then Uo is the E-socle in a suitable representation. 

Proof: Let a be a generator  of F / k  and suppose tha t  for any x 6 E,  a - l x a  6 U0; 

thus if a 6 F = Gal(F/k) ,  we have a-~xa  ° = a - l x a ,  i.e. 

xa°a  -1 = a ~ a - l x  for all x 6 E.  

Hence A = a°a -1 centralizes E and so lies in k; therefore a ° = Aa. If  cr has order 

r ,  then  a = a °~ = Ara and so ),~ = l. Let m be the LCM of the orders of the 

elements of  F and put  b = a m ;  then b ° = Ama m = b. This holds for each a 6 F, 

hence b 6 k and so a satisfies the equat ion x m - b = 0. I t  follows tha t  m = n 

and F / k  is cyclic. 

Conversely, assume F / k  to  be cyclic, generated by a E F satisfying 

x n - c  = 0 and let w be a primitive n th  root  of 1. Then  the conjugates of 

a are a, coa, co2a , . . . ,~dn- la ,  and if K is the field generated by 

E,  a - l E a , . . . ,  a*-~Ea ~-1, then K is the E-socle in U and is also the fixed field. 

This completes the proof. | 
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